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We first construct an approximate Riemann solver of the HLLC-type for the Baer–Nunziato
equations of compressible two-phase flow for the ‘‘subsonic” wave configuration. The sol-
ver is fully nonlinear. It is also complete, that is, it contains all the characteristic fields pres-
ent in the exact solution of the Riemann problem. In particular, stationary contact waves
are resolved exactly. We then implement and test a new upwind variant of the path-con-
servative approach; such schemes are suitable for solving numerically nonconservative
systems. Finally, we use locally the new HLLC solver for the Baer–Nunziato equations in
the framework of finite volume, discontinuous Galerkin finite element and path-conserva-
tive schemes. We systematically assess the solver on a series of carefully chosen test
problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Baer–Nunziato equations are a first-order system of 11 nonlinear partial differential equations that model the
dynamics of a three-dimensional flowing mixture of two compressible materials or phases, typically a solid particle phase
and a gaseous phase. The model was first proposed by Baer and Nunziato [1] in the context of granular energetic combustible
materials embedded in gaseous combustion products. Distinctive features of the Baer–Nunziato model are that it admits two
velocity vectors and two pressures. Several mathematical models for multiphase flows have a similar form to that of the ori-
ginal Baer–Nunziato equations. See for example [2–6]. From a numerical point of view it is therefore justified to concentrate
on the Baer–Nunziato equations, while still retaining a degree of generality. The mathematical character of the one-dimen-
sional homogeneous (no source terms) equations was comprehensively studied by Embid and Baer [7]. The equations are
hyperbolic, except for some well identified situations, and the complete mathematical structure of the 1D system is avail-
able. However, the equations cannot be written in conservation-law form, or divergence form. In other words, when the
equations are written in terms of the conserved variables for each phase there are nonconservative products present and
the classical Rankine–Hugoniot conditions to define shocks are not available. The nonconservative form of the equations
has for a long time remained a challenge from both the mathematical and numerical points of view.

This paper is primarily concerned with the Riemann problem for the Baer–Nunziato equations. This is the simplest initial
value problem worth studying. First, it gives insight into the behaviour of nonlinear wave propagation contained in the full
system. Second, its solution furnishes a basic tool, a Riemann solver, for numerical methods for solving the general
. All rights reserved.
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initial-boundary value problem. The first reported solution to the Riemann problem for the Baer–Nunziato equations is due
to Andrianov and Warnecke [8]. Such solution is however indirect: they assume a solution and then look for initial data that
corresponds to the assumed solution. In practice, especially for numerical purposes, one requires the direct solution, that is,
given the piecewise constant initial conditions we want to find the corresponding solution at a later time. The first direct
Riemann solver was reported by Schwendeman et al. [9]. See also the recent work of Deledicque and Papalexandris [6]. Rie-
mann solvers are used to construct upwind numerical methods in the classical frameworks of finite volume and discontin-
uous Galerkin finite element methods. Riemann solvers can also be used in the frame of path-conservative methods [10], a
recent class of schemes specially designed to approximate hyperbolic equations that contain nonconservative products. Per-
haps the earliest reported attempt to incorporate the Riemann problem into a numerical scheme for compressible two-
phase flow is that reported in [11], with encouraging results. More recent works in this direction include [12–17], to name
but a few. Analysis and experience shows that upwind schemes are the most accurate schemes, provided however, they are
based on complete Riemann solvers, that is, Riemann solvers that account for all the characteristic fields present in the exact
solution of the Riemann problem. In other words, the wave model of the approximate Riemann solver contains the same
number of waves as the exact Riemann solver. Devising complete Riemann solvers for large hyperbolic systems is, however,
a difficult or impossible task, and it is here where centred, or non-upwind, methods have a clear advantage over upwind
methods. There are several approaches for constructing approximate Riemann solvers, see [18], for example. Here we adopt
the HLLC approach first reported in [19,20] for the Euler equations. See also [21,22] for further developments.

In this paper we extend the HLLC approach to the one-dimensional Baer–Nunziato equations in the normal direction to an
arbitrary volume edge of a three-dimensional finite volume or element, resulting in a one-dimensional hyperbolic system of
11 equations in nonconservative form. To construct the solver, we first apply the HLLC approach based on integral averaged
Rankine–Hugoniot relations across the nonlinear waves, for each phase. This is possible because away from the linearly
degenerate solid contact wave the phases decouple and the equations recover their conservative character. This step con-
nects the initial data on the left and right states to the unknown states behind the nonlinear waves. We then connect such
states across the solid linearly degenerate field using jump conditions based on a thin-layer theory reported in [9]. The
resulting jump conditions can also be obtained by simply applying generalized Riemann invariants, as in [7]. The final result
is a nonlinear algebraic system of four equations connecting the unknowns to the initial conditions left and right of the inter-
face. Surprisingly, only two iterations of the Newton method are sufficient to achieve an accurate solution of the Riemann
problem and therefore the method becomes essentially a predictor–corrector method. The resulting HLLC-type approximate
Riemann solver is fully nonlinear. The solver is also complete, as it contains all the characteristic fields present in the exact
solution of the Riemann problem. This feature is most important for resolving intermediate waves, such as contact and shear
waves, with minimal numerical dissipation. Our solver, when implemented in a shock-capturing method, resolves exactly
isolated stationary contact discontinuities and shear waves. As a second contribution of this paper we implement and thor-
oughly test a new upwind path-conservative method, which opens the way to the use of different state Riemann solvers.
Here we implement and test the new HLLC solver for the Baer–Nunziato equations. In addition, in order to illustrate the po-
tential of the HLLC solver of this paper, we also implement it in the frame of finite volume and discontinuous Galerkin finite
element schemes. We systematically assess the solver on a series of carefully chosen tests problems. The Riemann solver for
the Baer–Nunziato equations based on the HLLC approach proves to be simpler and faster than the exact solver proposed in
[9] and at the same time provides virtually the same solution quality.

The rest of this paper is organized as follows. In Section 2 we recall the mathematical properties of the governing equa-
tions and fully describe the features of the Riemann problem. In Section 3 we present the new HLLC-type Riemann solver. In
Section 4 we carry out a systematic assessment of the solver on a series of carefully chosen local test problems for the states
and compare the approximate solutions against available exact solutions. In Section 5 we implement the HLLC solver in the
frame of finite volume and DG finite elements. In Section 6 we implement the HLLC solver in the framework of a new variant
of path conservative methods for hyperbolic systems in nonconservative form. In Section 7 we systematically assess the per-
formance of the new path-conservative method with the new HLLC solver and compare the results with the HLLC solver used
in the finite volume frame work and the DG finite element frameworks. We estimate the CPU time necessary to implement
our approximate Riemann solver and compare it with the time needed for the exact solver. Conclusions are drawn in
Section 8.

2. Equations and the Riemann problem

The Baer–Nunziato equations are a three-dimensional time-dependent system of 11 equations with source terms. Our
ultimate goal is to develop numerical schemes to solve these, using for example finite volume methods. To this end it is help-
ful to consider the governing equations in the direction normal to a cell boundary to find a numerical flux. Hence, without
loss of generality we can consider the x-split equations.

2.1. Split three-dimensional Baer–Nunziato equations

The x-split three-dimensional Baer–Nunziato equations are a set of 11 PDEs:
@tQ þ @xFðQ Þ þ TðQ Þ@x �a ¼ SðQ Þ; ð1Þ
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where
Q ¼
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:

The first six equations for variables with bar relate to the solid phase and the remaining five equations to the gas phase.
Here q;u;v;w; p; E are gas density, velocity components, pressure and total energy, and �q; �u; �v; �w; �p; E are the corresponding
variables for the solid; a and �a are volume fractions.

We assume an ideal equation of state (EOS) for the gas phase and a stiffened EOS for the solid phase:
p ¼ ðc� 1Þqe;

�p ¼ ð�c� 1Þ�q�e� �cP0;
where e and �e are the specific internal energies, c and �c are the specific heat ratios of the gas and solid phases, respectively,
and P0 is a known constant.

The sound speeds of the gas and solid phases are calculated as follows:
a ¼
ffiffiffiffiffiffi
cp
q

r
; �a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð�pþ P0Þ

�q

s
:

Solid and gas volume fractions are related through the saturation condition: �aþ a ¼ 1. In this paper we are primarily
interested in the principal part of Eq. (1) and therefore we can take SðQ Þ ¼ 0, no source terms. Eq. (1) include also the purely
one-dimensional Baer–Nunziato equations in the case of no tangential velocities. Therefore the study of split three-dimen-
sional equations is useful both for one-dimensional and multidimensional problems.

2.2. Eigenstructure

In this section we derive the expressions for eigenvalues and eigenvectors of the coefficient matrix of system (1) written
in quasilinear form. These are used to describe the behaviour of physical variables across each characteristic field in the Rie-
mann problem. The homogeneous Baer–Nunziato Eq. (1) can be rewritten in the following quasilinear form:
@tQ þ AðQ Þ@xQ ¼ 0; ð2Þ
where, as before, Q denotes the vector of conserved variables and the matrix AðQ Þ takes the form
AðQ Þ ¼

�u 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

�p� �cP0 �̂cH � �u2 � �a2 ð3� �cÞ�u ��̂c�v ��̂c�w �̂c 0 0 0 0 0
0 ��u�v �v �u 0 0 0 0 0 0 0
0 ��u �w �w 0 �u 0 0 0 0 0 0

�uð�p� �cP0Þ �u �H þ �̂c�V2

2

h i
H � �̂c�u2 ��̂c�u�v ��̂c�u �w �c�u 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0
p 0 0 0 0 0 ĉH � u2 � a2 ð3� cÞu �ĉv �ĉw ĉ
0 0 0 0 0 0 �uv v u 0 0
0 0 0 0 0 0 �uw w 0 u 0

p�u 0 0 0 0 0 u �H þ ĉV2

2

h i
H � ĉu2 �ĉuv �ĉ cu

266666666666666666666664

377777777777777777777775

;

with �̂c ¼ �c� 1; ĉ ¼ c� 1; �V2 ¼ �u2 þ �v2 þ �w2;V2 ¼ u2 þ v2 þw2; H ¼ Eþ �p=�q ¼ �V2=2þ �a2=ð�c� 1Þ and H ¼ Eþ p=q ¼
V2=2þ a2=ðc� 1Þ denote solid and gas enthalpies.



3576 S.A. Tokareva, E.F. Toro / Journal of Computational Physics 229 (2010) 3573–3604
The matrix A has 11 eigenvalues
k1 ¼ u� a; k2 ¼ k3 ¼ k4 ¼ u; k5 ¼ uþ a; k6 ¼ �u� �a; k7 ¼ k8 ¼ k9 ¼ �u; k10 ¼ �uþ �a; k11 ¼ �u
and a corresponding set of linearly independent right eigenvectors
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K11 ¼

ð�c� 1Þða2 � ðu� �uÞ2Þ �V2

2 � �u2
� �
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�uðpþ �cP0Þða2 � ðu� �uÞ2Þ
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2
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cð�c� 1Þpv �u2 � �V2

2

� �
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� �
�c�1
c�1 p a2 � c�1
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� �h i
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:

We note that the expressions for right eigenvectors of the system written in conservative variables are also useful, for exam-
ple, in constructing of slope limiters for high-order methods like the DG method considered in this paper. See [23] for details.

The Baer–Nunziato equations may be also written in physical (or primitive) variables, namely
W ¼ ½�a; �q; �u; �v ; �w; �p;q; u;v ;w;p�T
in nonconservative form
@tWþ BðWÞ@xW ¼ 0: ð3Þ
In this case the matrix BðWÞ takes the form
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B ¼

�u 0 0 0 0 0 0 0 0 0 0
0 �u �q 0 0 0 0 0 0 0 0
� Dp

�a�q 0 �u 0 0 1
�q 0 0 0 0 0

0 0 0 �u 0 0 0 0 0 0 0
0 0 0 0 �u 0 0 0 0 0 0
0 0 �q�a2 0 0 �u 0 0 0 0 0
� qDu

a 0 0 0 0 0 u q 0 0 0
0 0 0 0 0 0 0 u 0 0 1

q

0 0 0 0 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 u 0

� qa2Du
a 0 0 0 0 0 0 qa2 0 0 u

26666666666666666666664

37777777777777777777775

:

The eigenvalues of the matrix BðWÞ are the values below
k1 ¼ u� a; k2 ¼ k3 ¼ k4 ¼ u; k5 ¼ uþ a; k6 ¼ �u� �a; k7 ¼ k8 ¼ k9 ¼ �u; k10 ¼ �uþ �a; k11 ¼ �u
and the right eigenvectors corresponding to these eigenvalues are
K1 ¼
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; ð4Þ
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; K10 ¼

0
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0
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; ð5Þ

K11 ¼

1
0
0
0
0
Dp
�a

� qðDuÞ2

aða2�ðDuÞ2Þ
a2Du

aða2�ðDuÞ2Þ

0
0

� qa2ðDuÞ2

aða2�ðDuÞ2Þ

26666666666666666666666664

37777777777777777777777775

; ð6Þ
where Dp ¼ p� �p and Du ¼ u� �u.
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2.3. Exact solution of the Riemann problem

Consider the Riemann problem for the homogeneous Baer–Nunziato equations, namely
@tQ þ @xFðQ Þ þ TðQ Þ@x �a ¼ 0; ð7Þ

Q ðx;0Þ ¼
Q LðxÞ; if x < 0;

Q RðxÞ; if x > 0:

�
ð8Þ
Examination of the right eigenvectors of the system in physical variables (4)–(6) with generalized Riemann invariants
[18] in the appropriate characteristic fields allows us to describe the structure of the exact solution of the Riemann problem
(7) and (8). A variable corresponding to a zero component of the ith eigenvector does not change across the ith characteristic
field. Recall that the system (3) has 11 eigenvalues, some of which coalesce, and as a result it has six distinct characteristic
fields, across which the following relations for the jumps of physical variables are valid:

1. k1 ¼ u� a (gaseous left nonlinear wave). Solid phase: d�a ¼ 0; d�q ¼ 0; d�u ¼ 0; d�v ¼ 0; d �w ¼ 0; d�p ¼ 0. Gas phase: da ¼ 0;
dv ¼ 0; dw ¼ 0.

2. k2 ¼ u (gaseous contact). Solid phase: d�a ¼ 0; d�q ¼ 0; d�u ¼ 0; d�v ¼ 0; d �w ¼ 0; d�p ¼ 0. Gas phase: da ¼ 0; du ¼ 0; dp ¼ 0.
3. k3 ¼ uþ a (gaseous right nonlinear wave). Solid phase: d�a ¼ 0; d�q ¼ 0; d�u ¼ 0; d�v ¼ 0; d �w ¼ 0; d�p ¼ 0. Gas phase:

da ¼ 0; dv ¼ 0; dw ¼ 0.
4. k4 ¼ �u� �a (solid left nonlinear wave). Solid phase: d�a ¼ 0; d�v ¼ 0; d �w ¼ 0. Gas phase: da ¼ 0; dq ¼ 0;

du ¼ 0; dv ¼ 0; dw ¼ 0; dp ¼ 0.
5. k5 ¼ �u (solid contact). Solid phase: d�u ¼ 0. Gas phase: dv ¼ 0; dw ¼ 0.
6. k6 ¼ �uþ �a (solid right nonlinear wave). Solid phase: d�a ¼ 0; d�v ¼ 0; d �w ¼ 0. Gas phase: da ¼ 0; dq ¼ 0;

du ¼ 0; dv ¼ 0; dw ¼ 0; dp ¼ 0.

Using these relations we can conclude that all solid phase variables remain constant across the three gaseous character-
istic fields, while the solid contact changes all gaseous variables except for the tangential velocities. The left and right solid
nonlinear waves do not affect the gaseous-phase variables. The resulting structure of the exact solution is illustrated in Fig. 1.
There are in general six distinct wave families: three for the gas phase and three for the solid phase. These six waves separate
seven constant states. In Fig. 1 we denote the gaseous variables by U and the solid variables by �U, except for the volume
fraction �a, which is presented separately, where
�U ¼ ½�a�q; �a�q�u; �a�q�v ; �a�q �w; �a�qE�T ; U ¼ ½aq;aqu;aqv ;aqw;aqE�T :
Consider Figs. 2 and 3. These illustrate in more detail the features of the intermediate waves. For the solid phase there are
two intermediate regions of constant states ‘‘�L” and ‘‘�R” separated by the solid contact, in which densities and pressures are
different and x-velocities are equal: �u�L ¼ �u�R. For the gas phase the intermediate values are presented by three constant re-
gions, denoted by ‘‘�L”, ‘‘�0” and ‘‘�R”. The exact values for these states are in general dependent on the relative positions of
the two contact waves. For the configuration in Fig. 3 we have the following definitions of the variables in region ‘‘�0”:
u�0 ¼ u�R; p�0 ¼ p�R; q�0 ¼ q�L
p�R
p�L

� �1=c

:

Expressions for �q�L; �u�L; �p�L; �q�R; �u�R; �p�R and q�L;u�L; p�L;q�R;u�R; p�R can be obtained by considering the Rankine–Hugoniot conditions
across the appropriate nonlinear wave [18].

The tangential velocities �v ; �w;v and w do not change across the left and right nonlinear waves of each phase, the jump of
this quantities occurs across the contact discontinuity of the corresponding phase and is defined only by the left and right
Fig. 1. Structure of the exact solution of the Riemann problem for the homogeneous Baer–Nunziato equations.



Fig. 2. Intermediate states for solid phase (split 3D case).

Fig. 3. Intermediate states for gas phase (split 3D case).
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initial data. The solution of the Riemann problem for the split three-dimensional Baer–Nunziato equations is therefore basi-
cally the same as for one-dimensional equations. In what follows we derive the Riemann solver applicable for one-dimen-
sional and split two- and three-dimensional problems and estimate its performance on several specially chosen test cases.

An important property of Baer–Nunziato equations is the fact that the jump of the solid phase volume fraction occurs only
across the solid contact discontinuity, which means that the two phases remain decoupled away from the solid contact, and
Eq. (1) reduce to a pair of Euler equations for each phase separately. In the vicinity of the solid contact the phases become
coupled due to the change of volume fractions, and additional relations connecting the states on either side of the solid con-
tact must be considered. A special approximation of this solid contact discontinuity as a thin layer was proposed by Sch-
wendeman et al. in [9]. In that paper the thin-layer equations across the solid contact were derived and solved numerically.
3. An HLLC-type Riemann solver

In this section we estimate the intermediate values of the solution of the Riemann problem (see Figs. 2 and 3) using the
HLLC approach. In what follows we consider the purely one-dimensional version of the Eq. (1), leaving the tangential veloc-
ities out of consideration and therefore dealing with the system of 7 equations with respect to conservative variables vector
Q ¼ ½�a; �a�q; �a�q�u; �a�qE;aq;aqu;aqE�T :
We assume that wave speed estimates SL; SL; SR; SR are available. The solver takes into account the behaviour of the solution
across the nonlinear waves of speeds SL; SL; SR; SR and the behaviour of the solution across the contact waves of speeds SM ; SM .
We first deal with the SM wave.

3.1. Thin layer equations

We follow the basic ideas of Schwendeman et al. [9] in construction of our approximate numerical flux, in particular, we
consider the thin-layer equations across the contact discontinuity in the solid phase. Two different configurations of the
characteristic fields are possible for the Baer–Nunziato equations, depending on the values of the relative velocity u� �u:
the ‘‘subsonic” case, for which the relation ðu� �uÞ2 < a2 is satisfied, and the ‘‘supersonic” case, for which the opposite con-
dition ðu� �uÞ2 > a2 holds true.

In this paper we deal only with the ‘‘subsonic” situation, which is considered to be more relevant [9]. In this model the
solid contact is situated between the left and right gas-phase waves on the wave pattern in x� t plane. There are two pos-
sible ‘‘subsonic” wave configurations: one of them is presented in Figs. 2 and 3, where the solid contact lies to the left of the
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gas contact. Another possible ‘‘subsonic” wave configuration corresponds to the case when the solid contact is situated on
the right of the gas contact.

For the ‘‘subsonic” case illustrated in Figs. 2 and 3 the thin-layer equations take the following form:
�u�R � �u�L ¼ 0;

aR
p�R
p�L

� �1=c

u�R � �u�R
� 	

� aL u�L � �u�L
� 	

¼ 0;

�aR�p�R þ aRp�R � �aL�p�L � aLp�L þ aLq�L u�L � �u�L
� 	

u�R � u�L
� 	

¼ 0;

cp�R
ðc� 1Þq�L

p�L
p�R

� �1=c

þ 1
2

u�R � �u�R
� 	2 � cp�L

ðc� 1Þq�L
� 1

2
u�L � �uLv
� 	2 ¼ 0:

ð9Þ
For the derivation of this system see [9]. In this paper the solid contact wave is treated as a smooth layer of infinitesimal
width and the governing equations across this wave are thus rewritten in terms of the independent variable n ¼ x� Ut,
where U is the speed of the solid contact:
�UQ n þ FnðQ Þ þ TðQ Þ�an ¼ 0: ð10Þ
Considering Eq. (10) componentwise we can obtain the following system:
U ¼ �u;

ð�a�qÞn ¼ p�an;

� �uðaqÞn þ ðaquÞn ¼ 0;

� �uðaquÞn þ ðaqu2 þ apÞn ¼ �p�an;

� �uðaqEÞn þ ðaquEþ aupÞn ¼ �p�u�an;

ð11Þ
which leads to a set of jump conditions
aqðu� �uÞ ¼ K1;

aqðu� �uÞ2 þ apþ �a�p ¼ K2;

hþ 1
2
ðu� �uÞ2 ¼ K3;

ð12Þ
where h ¼ eþ p=q is the enthalpy of the gas and K1;K2;K3 are constants of integration.
Direct application of the jump conditions (12) across the solid contact results in the thin-layer Eqs. (9).
We note that the same system of Eq. (9) can be obtained by considering the generalized Rankine–Hugoniot conditions

across the solid contact wave. Assume that there exists a function eFðQ Þ such that
eFðQ Þ ¼ @eTðQ Þ
@Q

;

where eTðQ Þ ¼ TðQ Þ;0; . . . ;0½ �.
Then using the flux vector H ¼ Fþ eF we can rewrite Eq. (1) in the conservative form
@tQ þ @xHðQ Þ ¼ 0
and apply the generalized Rankine–Hugoniot conditions in the form
H0 �H1 ¼ SMðQ 0 � Q 1Þ: ð13Þ
Taking into account the definition for the flux H and using the theory reported in [25] for the nonconservative part of the
system, namely,
N ¼ eF0 � eF1 ¼
Z 1

0

eT uðs;Q 1;Q 0Þð Þ @u
@s

ds;
where u is the path satisfying the conditions
�u : ½0;1� � Rn � Rn ! Rn;

�uð0;Q 1;Q 0Þ ¼ Q 1; �uð1;Q 1;Q 0Þ ¼ Q 0;
we can rewrite (13) as follows:
F0 � F1 þ N ¼ SMðQ 0 � Q 1Þ: ð14Þ
A straightforward manipulation of the Eq. (14) leads to the jump conditions
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SM ¼ �u�R ¼ �u�L;

aRq�0ðu�R � SMÞ ¼ aLq�Lðu�L � SMÞ;
aRq�0u�Rðu�R � SMÞ þ aRp�R þ �aR�p�R ¼ aLq�Lu�Lðu�L � SMÞ þ aLp�L þ �aL�p�L;

aRq�0E�0ðu�R � SMÞ þ aRu�Rp�R þ �aR�u�R�p�R ¼ aLq�LE�Lðu�L � SMÞ þ aLu�Lp�L þ �aL�u�L�p�L;

ð15Þ
which are obviously equivalent to the thin-layer equation (9).
The generalized Rankine–Hugoniot conditions (14) also give the definition for the nonconservative term N:
N ¼

SMð�aR � �aLÞ
0

� �aR�p�R � �aL�p�L
� 	

� �aR�u�R�p�R � �aL�u�L�p�L
� 	

0

�aR�p�R � �aL�p�L
�aR�u�R�p�R � �aL�u�L�p�L;

266666666666664

377777777777775
; ð16Þ
which can be used in numerical methods to approximate the term TðQ Þ.
For another type of ‘‘subsonic” wave configuration, when the solid contact lies to the right of gas contact, the thin-layer

equations can be written as:
�u�R � �u�L ¼ 0;

aR u�R � �u�R
� 	

� aL
p�L
p�R

� �1=c

u�L � �u�L
� 	

¼ 0;

�aR�p�R þ aRp�R � �aL�p�L � aLp�L þ aRq�Rðp�RÞ u�R � �u�R
� 	

u�R � u�L
� 	

¼ 0;

cp�R
ðc� 1Þq�Rðp�LÞ

þ 1
2

u�R � �u�R
� 	2 � cp�L

ðc� 1Þq�R
p�R
p�L

� �1=c

� 1
2

u�L � �u�L
� 	2 ¼ 0:

ð17Þ
Recall that in the exact Riemann solver of [9] the nonlinear systems (9) and (17) are considered as systems of four equa-
tions for four unknowns p�L; p

�
R; �p

�
L; �p

�
R, and corresponding velocities and densities are related to appropriate pressures and left

and right states through nonlinear dependences arising from the analysis of the left and right wave structures. For example,
to connect the values u�L and p�L one needs to analyse the type of the left wave, i.e. define whether it is a shock or a rarefaction
wave. Then, one must choose the appropriate expression for the function across this wave:
FLðp�LÞ ¼
p�L � pL

� 	 AL
p1þBL

h i1
2
; p�L > pL ðshock waveÞ;

2aL
c�1

p�L
pL

� �ðc�1Þ=2c
� 1


 �
; p1 < pL; ðrarefactionÞ;

8>><>>: ð18Þ
where AL ¼ 2
ðcþ1ÞqL

;BL ¼ c�1
cþ1 pL, and write the final expression for the velocity:
u�L ¼ uL � FLðp�LÞ: ð19Þ
Such analysis of the wave structure must be carried out on every step of the iterative solution process of the nonlinear sys-
tem (9) or (17), with Jacobi matrices dependent on the particular wave type.

3.2. HLLC-type intermediate states

We propose the following simplification of the solution procedure: we combine the HLLC approach [18–22] with the
numerical solution of thin-layer equations across solid contact. Instead of analysing the type of left and right waves for each
phase we estimate their speeds and use these to connect the states in regions ‘‘L” and ‘‘�L” (and ‘‘R” and ‘‘�R”, respectively).
After that we can use the values computed by HLLC scheme to solve the thin-layer equations.

Consider the ‘‘subsonic” wave structure presented in Figs. 2 and 3 separately for solid and gas phases. We treat the left
and right waves of each phase as discontinuities propagating with known velocities SL; SR; SL and SR, respectively. As men-
tioned above, there is no change of phase volume fractions across these waves, therefore the two-phase equations reduce
to a pair of Euler equations, for which the following averaged Rankine–Hugoniot conditions are valid:
�G�L ¼ �GL þ SLð�U�L � �ULÞ;
�G�R ¼ �GR þ SRð�U�R � �URÞ;

ð20Þ

G�L ¼ GL þ SLðU�L � ULÞ;
G�R ¼ GR þ SRðU�R � URÞ;

ð21Þ
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where the states �UL; �UR; �U�L; �U�R;UL;UR;U
�
L;U

�
R are presented in Fig. 1 and �GL; �GR;GL;GR are components of the flux vector F in (1)

corresponding to left and right states:
�GL ¼ �Gð�ULÞ; �GR ¼ �Gð�URÞ;
GL ¼ GðULÞ; GR ¼ GðURÞ;
where
�G ¼ ½�a�q�u; �a �q�u2 þ �p
� 	

; �a�u �qEþ �p
� 	

�T ;

G ¼ ½aqu;a qu2 þ p
� 	

;au qEþ pð Þ�T :
From Eqs. (20) and (21) we can obtain direct expressions for the intermediate states:
�q�L �u�L
� 	

¼ �qL
SL��uL

SL��u�
L

� �
;

�p�L �u�L
� 	

¼ �pL þ �qLðSL � �uLÞ �u�L � �uL
� 	

;

ð22Þ

�q�R �u�R
� 	

¼ �qR
SR��uR

SR��u�
R

� �
;

�p�R �u�R
� 	

¼ �pR þ �qRðSR � �uRÞ �u�R � �uR
� 	

:

ð23Þ
Analogous expressions are valid for ‘‘�L” and ‘‘�R” states in the gas phase if we have the wave speeds estimates SL and SR:
q�L u�L
� 	

¼ qL
SL�uL
SL�u�L

� �
;

p�L u�L
� 	

¼ pL þ qLðSL � uLÞ u�L � uL
� 	

;
ð24Þ

q�R u�R
� 	

¼ qR
SR�uR
SR�u�

R

� �
;

p�R u�R
� 	

¼ pR þ qRðSR � uRÞ u�R � uR
� 	

:
ð25Þ
Note that in Eqs. (24) and (25) the gas velocities u�L and u�R can be different, unlike the classical Euler equations.

3.3. Resulting nonlinear system

For the solution of the ‘‘subsonic” nonlinear thin-layer equations across the solid contact we choose the four pressures
p�L; p

�
R; �p

�
L; �p

�
R as independent variables and express the velocities and densities of both phases in terms of these pressures from

HLLC relations (22) and (25), that is for K ¼ L;R
�u�Kð�p�KÞ ¼ �uK þ
�p�K � �pK

�qK SR � �uK

� � ; ð26Þ

�q�Kð�p�KÞ ¼ �q�K
SK � �uK

SK � �u�Kð�p�KÞ

 !
¼

�q2
K SK � �uK

� �2

�qK SK � �uK

� �2
� �p�K � �pK
� 	 ð27Þ
for the solid phase, and
u�Kðp�KÞ ¼ uK þ
p�K � pK

qK SR � uKð Þ ; ð28Þ

q�Kðp�KÞ ¼ q�K
SK � uK

SK � u�Kðp�KÞ

� �
¼ q2

K SK � uKð Þ2

qK SK � uKð Þ2 � p�K � pK

� 	 ð29Þ
for the gas phase.
Substituting the expressions (26)–(29) in Eq. (9) or (17) we finally obtain the nonlinear system
�u�R �p�R
� 	

� �u�L �p�L
� 	

¼ 0;

aR
p�R
p�L

� �1=c

u�R p�R
� 	

� �u�R �p�R
� 	� 	

� aL u�L p�L
� 	

� �u�L �p�L
� 	� 	

¼ 0;

aLq�L p�L
� 	

u�L p�L
� 	

� �u�L �p�L
� 	� 	

u�R p�R
� 	

� u�L p�L
� 	� 	

þ �aR�p�R þ aRp�R � �aL�p�L � aLp�L ¼ 0;

cp�R
ðc� 1Þq�L p�L

� 	 p�L
p�R

� �1=c

þ 1
2

u�R p�R
� 	

� �u�R �p�R
� 	� 	2 � cp�L

ðc� 1Þq�L p�L
� 	� 1

2
u�L p�L
� 	

� �u�L �p�L
� 	� 	2 ¼ 0

ð30Þ
for the wave configuration in Figs. 2 and 3, or
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�u�R �p�R
� 	

� �u�L �p�L
� 	

¼ 0;

aR u�R p�R
� 	

� �u�R �p�R
� 	� 	

� aL
p�L
p�R

� �1=c

u�L p�L
� 	

� �u�L �p�L
� 	� 	

¼ 0;

aRq�R p�R
� 	

u�R p�R
� 	

� �u�R �p�R
� 	� 	

u�R p�R
� 	

� u�L p�L
� 	� 	

þ �aR�p�R þ aRp�R � �aL�p�L � aLp�L ¼ 0;

cp�R
ðc� 1Þq�R p�L

� 	þ 1
2

u�R p�R
� 	

� �u�R �p�R
� 	� 	2 � cp�L

ðc� 1Þq�R p�R
� 	 p�R

p�L

� �1=c

� 1
2

u�L p�L
� 	

� �u�L �p�L
� 	� 	2 ¼ 0

ð31Þ
for the other ‘‘subsonic” wave pattern.
We use Newton’s method to solve the appropriate nonlinear system to obtain the pressures p�L; p

�
R; �p

�
L; �p

�
R. Note that we do

not need to know the estimates for the velocities of the intermediate gas and solid contact waves, as these are included in the
resulting nonlinear system. All the other quantities are then computed using (26)–(29) and relations for the values in region
‘‘*0”:
q�0 ¼ q�L
p�R
p�L

� �1=c

;

u�0 ¼ u�R;

p�0 ¼ p�R

ð32Þ
for the wave pattern in Fig. 3 and
q�0 ¼ q�R
p�L
p�R

� �1=c

;

u�0 ¼ u�L;

p�0 ¼ p�L

ð33Þ
for the other wave pattern.
Another possible way to solve the nonlinear equations across the solid contact is to rewrite them in terms of velocities,

and iterate with respect to variables u�L;u
�
R; �u

�
L; �u

�
R. From the theoretical point of view there is no difference between these two

approaches, as the system remains the same, but in practice the iterations in terms of pressures proved to be more robust for
severe test problems with very low pressures or densities. Iteration in terms of velocities fail to compute such test cases, as
there is no mechanism to control pressure positivity. All the results of this paper are therefore obtained using pressure
iterations.

A useful observation concerning the number of iterations can be made from our numerical tests. It appears that 1-2 iter-
ations are sufficient for convergence of Newton’s method for all the test cases studied, and therefore our approximate Rie-
mann solver is essentially a predictor–corrector scheme.
3.4. Wave speed estimates

Relations (22)–(25) for the intermediate HLLC states assume the estimates of the wave speeds SL; SR; SR and SL, which must
be known at each step of Newton’s iteration. Several possible estimations for these velocities were proposed in [18]. For the
Euler equations one choice is
SL ¼ �uL � �aL; SR ¼ �uR þ �aR;

SL ¼ uL � aL; SR ¼ uR þ aR:
Another choice is to use pressure-based wave speed estimates
SL ¼ �uL � �aL�qL; SR ¼ �uR þ �aR�qR;

SL ¼ uL � aLqL; SR ¼ uR þ aRqR;
ð34Þ
where the functions �qK and qK take the following form for K ¼ L;R:
�qK ¼
1; if �p�K 6 �pK ; ðrarefactionÞ;

1þ �cþ1
2�c

�p�KþP0

�pKþP0
� 1

� �
 �1
2

; if �p�K > �pK ; ðshock waveÞ;

8><>: ð35Þ

qK ¼
1; if p�K 6 pK ; ðrarefactionÞ;

1þ cþ1
2c

p�K
pK
� 1

� �h i1
2
; if p�K > pK ; ðshock waveÞ;

8<: ð36Þ
where aK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpK=qK

p
; �aK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð�pK þ P0Þ=�qK

q
;K ¼ L;R are the sound speeds for gas and solid phase, respectively.
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There is a possibility of upgrading the wave speed estimates after each iteration if the scheme is used in iterative mode.
The second variant is found to be more reliable and robust. We therefore use this method in all the computations presented
in this paper.

The algorithm can be summarized as follows: we solve the nonlinear system of Eq. (30) (or (31), depending on the type of
‘‘subsonic” wave pattern) in terms of pressures p�L; p

�
R; �p

�
L; �p

�
R, using the expressions (26)–(29) for the densities and velocities

present in the thin-layer equations, with any of the above described wave speed estimates. Having defined the solid and gas
intermediate pressures, we recompute the intermediate velocities and densities according to (26)–(29) and (32) and (33).
4. Assessment of HLLC-type solver on local Riemann problems

In this section we assess the performance of the HLLC-type Riemann solver derived in the previous section on several test
cases, comparing the intermediate states with those of the exact Riemann solver. We present results for six test problems
shown in Tables 2–13. Tests 1 and 2 were taken from [9], Test 3 includes a sonic rarefaction, Test 4 is a severe test problem
with a low-density flow, Test 5 assesses the resolution of stationary contact discontinuities and Test 6 includes very strong-
shock waves.

The EOS parameters for the considered test problems are listed in Table 1. The solution values of the solid volume fraction,
densities, velocities, pressures and gas densities, velocities and pressures obtained by the exact and approximate Riemann
solvers are listed in Tables 2–13.
Table 2
Test 1 (exact solution).

Region L Region *L Region*0 Region*R Region R

�a 0.8 0.8 0.8 0.3 0.3
�q 1.0 0.9436 0.9436 1.0591 1.0
�u 0.0 0.0684 0.0684 0.0684 0.0
�p 1.0 0.9219 0.9219 1.0837 1.0
q 0.2 0.3266 0.6980 0.9058 1.0
u 0.0 �0.7683 �0.7683 �0.1159 0.0
p 0.3 0.6045 0.6045 0.8707 1.0

Table 1
EOS parameters.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

�c 1.4 3.0 1.4 1.4 3.0 3.0
c 1.4 1.35 1.4 1.4 1.4 1.4
�p0 0.0 3400.0 0.0 0.0 10.0 100.0

Table 4
Test 2 (exact solution).

Region L Region *L Region*0 Region *R Region R

�a 0.2 0.2 0.9 0.9 0.9
�q 1900.0 2040.1092 1821.4053 1821.4053 1950.0
�u 0.0 �0.1716 �0.1716 �0.1716 0.0
�p 10.0 824.4354 185.6560 185.6560 1000.0
q 2.0 2.1093 1.6733 1.8554 1.0
u 0.0 �0.0761 0.7912 0.7912 0.0
p 3.0 3.2235 2.3580 2.3580 1.0

Table 3
Test 1 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.8 0.8 0.8 0.3 0.3
�q 1.0 0.9446 0.9446 1.0545 1.0
�u 0.0 0.0693 0.0693 0.0632 0.0
�p 1.0 0.9180 0.9180 1.0772 1.0
q 0.2 0.3257 0.7040 0.9115 1.0
u 0.0 �0.7631 �0.7631 �0.1149 0.0
p 0.3 0.6018 0.6018 0.8641 1.0



Table 5
Test 2 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.2 0.2 0.9 0.9 0.9
�q 1900.0 2030.2381 1834.8937 1834.8937 1950.0
�u 0.0 �0.1594 �0.1632 �0.1632 0.0
�p 10.0 762.8331 171.9396 171.9396 1000.0
q 2.0 2.0930 1.6298 1.8108 1.0
u 0.0 �0.0649 0.7558 0.7558 0.0
p 3.0 3.1898 2.2756 2.2756 1.0

Table 6
Test 3 (exact solution).

Region L Region *L Region *0 Region *R Region R

�a 0.8 0.8 0.8 0.3 0.3
�q 1.0 0.5799 0.5799 0.3397 0.125
�u 0.75 1.3609 1.3609 1.3609 0.0
�p 1.0 0.4663 0.4663 0.4663 0.1
q 1.0 0.5799 0.3397 0.3397 0.125
u 0.75 1.3609 1.3609 1.3609 0.0
p 1.0 0.4663 0.4663 0.4662 0.1

Table 7
Test 3 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.8 0.8 0.8 0.3 0.3
�q 1.0 0.7389 0.7389 0.3542 0.125
�u 0.75 1.1680 1.1680 1.4487 0.0
�p 1.0 0.5054 0.5054 0.5054 0.1
q 1.0 0.7389 0.3542 0.3542 0.125
u 0.75 1.1680 1.1680 1.4487 0.0
p 1.0 0.5053 0.5054 0.5054 0.1

Table 9
Test 4 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.8 0.8 0.5 0.5 0.5
�q 1.0 0.2723 0.2723 0.2723 1.0
�u �2.0 0.0 0.0 0.0 2.0
�p 0.4 10�6 10�6 10�6 0.4

q 1.0 0.2723 0.2723 0.2723 1.0
u �2.0 0.0 0.0 0.0 2.0
p 0.4 10�6 10�6 10�6 0.4

Table 8
Test 4 (exact solution).

Region L Region *L Region *0 Region *R Region R

�a 0.8 0.8 0.5 0.5 0.5
�q 1.0 0.0219 0.0219 0.0219 1.0
�u �2.0 0.0 0.0 0.0 2.0
�p 0.4 0.0019 0.0019 0.0019 0.4
q 1.0 0.0219 0.0219 0.0219 1.0
u �2.0 0.0 0.0 0.0 2.0
p 0.4 0.0019 0.0019 0.0019 0.4
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Table 11
Test 5 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.6 0.6 0.3 0.3 0.3
�q 1.4 1.4 0.9999 0.9999 1.0
�u 0.0 0.0 0.0 0.0 0.0
�p 2.0 2.0 2.9999 2.9999 3.0
q 1.4 1.3999 1.4 1.0 1.0
u 0.0 0.0 0.0 0.0 0.0
p 1.0 0.9999 1.0 1.0 1.0

Table 12
Test 6 (exact solution).

Region L Region *L Region *0 Region *R Region R

�a 0.7 0.7 0.2 0.2 0.2
�q 1.0 0.7687 1.6087 1.6087 1.0
�u �19.5975 �6.3085 �6.3085 �6.3085 �19.5975
�p 1000.0 399.5878 466.7257 466.7257 0.01
q 1.0 0.4684 0.5030 5.9991 1.0
u �19.5975 6.7332 �1.7541 �1.7541 �19.5975
p 1000.0 345.8279 382.0858 382.0858 0.01

Table 10
Test 5 (exact solution).

Region L Region *L Region *0 Region *R Region R

�a 0.6 0.6 0.3 0.3 0.3
�q 1.4 1.4 1.0 1.0 1.0
�u 0.0 0.0 0.0 0.0 0.0
�p 2.0 2.0 3.0 3.0 3.0
q 1.4 1.4 1.4 1.0 1.0
u 0.0 0.0 0.0 0.0 0.0
p 1.0 1.0 1.0 1.0 1.0

Table 13
Test 6 (approximate solution).

Region L Region *L Region *0 Region *R Region R

�a 0.7 0.7 0.2 0.2 0.2
�q 1.0 0.8372 1.5648 1.5648 1.0
�u 0.0 �8.4297 �7.7409 �7.7409 0.0
�p 1000.0 358.4630 389.4630 389.4630 0.01
q 1.0 0.6778 0.6978 5.9990 1.0
u 0.0 �1.8135 �2.5577 �2.5577 0.0
p 1000.0 334.5839 348.4473 348.4473 0.01
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Results indicate that our approximate Riemann solver produces accurate intermediate states (see Fig. 1) for most test
cases. Inaccuracies appear on very severe test problems, including low-pressure flow or very strong shocks, in these situa-
tions the approximate intermediate states can differ significantly from the exact ones. However, such inaccuracy in the states
does not deteriorate the quality of the numerical fluxes derived from our Riemann solver when implemented in numerical
schemes.

The main purpose of this paper is the development of the HLLC-type approximate Riemann solver to be used in numerical
methods. This is done in Sections 5 and 6.
5. HLLC-type Riemann solver in the finite volume and discontinuous Galerkin finite element methods

In this section we derive the numerical flux based on the approximate Riemann solver and use it as a building block for
the first-order finite volume Godunov scheme described in [9] and a second-order discontinuous Galerkin scheme [23] based
on the formulation of van der Vegt et al. [24]. In Section 6 we apply the Riemann solver to a path-conservative scheme.
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5.1. Numerical flux

Having defined the intermediate states by the approximate Riemann solver we can use them to construct the numerical
flux for the conservative part of the system (1). Consider again Figs. 2 and 3. The x� t plane for the solid phase is separated by
the wave families into four regions of constant states �U, and we thus need to identify the flux vector in each of these regions.
For the gas phase, there are five regions of constant states U, and we also need to find the numerical flux in these regions. The
flux for the solid phase (here SM ¼ �u�L ¼ �u�R) is
�Gð�UL; �URÞ ¼

�GL; 0 6 SL;
�G�L ¼ �GL þ SL

�U�L � �UL
� 	

; SL 6 0 6 SM;

�G�R ¼ �GR þ SR
�U�R � �UR
� 	

; SM 6 0 6 SR;

�GR; SR 6 0;

8>>>><>>>>: ð37Þ
where �GL ¼ �Gð�ULÞ; �GR ¼ �Gð�URÞ.
For the gas phase, when the solid-phase contact lies to the left of gas-phase contact (Fig. 3), we have the following expres-

sions SM ¼ u�0 ¼ u�R
� 	

:

GðUL;URÞ ¼

GL; 0 6 SL;

G�L ¼ GL þ SL U�L � UL
� 	

; SL 6 0 6 SM;

G�0 ¼ GR þ SRðU�R � URÞ þ SM U�0 � U�R
� 	

; SM 6 0 6 SM;

G�R ¼ GR þ SR U�R � UR
� 	

; SM 6 0 6 SR;

GR; SR 6 0:

8>>>>>><>>>>>>:
ð38Þ
If the solid-phase contact is situated to the right of the gas-phase contact, we will have similar expressions for the flux
SM ¼ u�0 ¼ u�L
� 	

:

GðUL;URÞ ¼

GL; 0 6 SL;

G�L ¼ GL þ SL U�L � UL
� 	

; SL 6 0 6 SM;

G�0 ¼ GL þ SL U�L � UL
� 	

þ SM U�0 � U�L
� 	

; SM 6 0 6 SM;

G�R ¼ GR þ SR U�R � UR
� 	

; SM 6 0 6 SR;

GR; SR 6 0;

8>>>>>><>>>>>>:
ð39Þ
where GL ¼ GðULÞ;GR ¼ GðURÞ.
The resulting flux for the whole system is then constructed from �G and G as follows:
bFðQ L;Q RÞ ¼
0
�G

G

264
375:
In (37)–(39) we assume the HLLC definitions for the states ðK ¼ L;RÞ:
�U�K ¼ �aK �qK
SK � �uK

SK � SM

 ! 1
SM

EK þ ðSM � �uKÞ SM þ �pK
�qK ðSK��uK Þ

� �
2664

3775;

U�K ¼ aKqK
SK � uK

SK � SM

� � 1
SM

EK þ ðSM � uKÞ SM þ pK
qK ðSK�uK Þ

� �
2664

3775;

U�0 ¼
a0q�0

a0q�0u�0
a0q�0E�0

264
375;
where for the wave configuration presented in Fig. 3
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a0 ¼ aR;

q�0 ¼ q�L
p�R
p�L

� �1=c

;

u�0 ¼ u�R;

p�0 ¼ p�R;

E�0 ¼
p�0

ðc� 1Þq�0
þ 1

2
u�0
and for the other wave configuration
a0 ¼ aL;

q�0 ¼ q�R
p�L
p�R

� �1=c

;

u�0 ¼ u�L;
p�0 ¼ p�L;

E�0 ¼
p�0

ðc� 1Þq�0
þ 1

2
u�0:
5.2. Finite volume method

Assume a finite-volume mesh with volumes ½xj�1
2
; xjþ1

2
� � ½tn; tnþ1�, cell boundaries xjþ1

2
, cell spacing Dxj ¼ xjþ1

2
� xj�1

2
, cell cen-

tre xj ¼ 1
2 ðxj�1

2
þ xjþ1

2
Þ and time step Dtn ¼ tnþ1 � tn. We define the cell average
Q n
j ¼

1
Dxj

Z x
jþ1

2

x
j�1

2

Q ðx; tnÞdx
and integrate the equations over the volume Xn
j ¼ ½xj�1

2
; xjþ1

2
� � ½tn; tnþ1� to obtain the exact relation
Q nþ1
j ¼ Q n

j �
Dtn

Dxj
Fjþ1

2
n � Fj�1

2
n

� �
� 1

Dxj

Z Z
Xn

j

TðQ Þ@x �adxdt; ð40Þ
where
Fn
j�1

2
¼ bFðQ n

j�1;Q
n
j Þ ¼

1
Dtn

Z tnþ1

tn

F Q xj�1
2
; t

� �� �
dt:
We use the same approach as in [9] to approximate the integrals of nonconservative terms in (40). We first apply our Rie-
mann solver to define all the intermediate states of the solution, after that we use the following approximation of the term

1
Dtn

R R
Xn

j
TðQ Þ@x �adxdt (compare with (16)):
bTðQ L;Q RÞ ¼

SMð�aR � �aLÞ
0

� �p�R �aR � �p�L �aL
� 	

�SM �p�R �aR � �p�L �aL
� 	

0
�p�R�aR � �p�L �aL

SM �p�R �aR � �p�L �aL
� 	

26666666666664

37777777777775
:

The resulting finite-volume Godunov scheme for Eq. (1) takes the form
Q nþ1
j ¼ Q n

j �
Dtn

Dxj
H�jþ1

2
�Hþj�1

2

� �
;

where H�j�1
2

and Hþj�1
2

satisfy
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H�j�1
2
¼

bFðQ n
j�1;Q

n
j Þ þ bTðQ n

j�1;Q
n
j Þ; if Sn

M;j�1
2
6 0;bFðQ n

j�1;Q
n
j Þ; if Sn

M;j�1
2
> 0;

8<:
Hþj�1

2
¼

bFðQ n
j�1;Q

n
j Þ; if Sn

M;j�1
2
6 0;bFðQ n

j�1;Q
n
j Þ � bTðQ n

j�1;Q
n
j Þ; if Sn

M;j�1
2
> 0:

8<:

5.3. Discontinuous Galerkin finite element method

Consider Eq. (1) in the one-dimensional computational domain [0,1]. We seek the approximate solution Q hðx; tÞ of (1) as a
piecewise-polynomial function in space, i.e. the approximate solution Q j

h within each computational cell Ij ¼ ½xj�1
2
; xjþ1

2
� is a

polynomial of degree k. Such solution can be represented as an expansion over basis functions
Q j
hðx; tÞ ¼

Xk

l¼0

Q l
jðtÞulðxÞ;

ulðxÞ ¼ Pl
2ðx� xjÞ

Dxj

� �
; Dxj ¼ xjþ1

2
� xj�1

2
; xj ¼

xjþ1
2
þ xj�1

2

2
;

where Pl is a Legendre polynomial of order l. In this paper we restrict ourselves to piecewise-linear approximations. Assume
there exists a function such that
eFðQ Þ ¼ @eTðQ Þ
@Q

;

eTðQ Þ ¼ ½TðQ Þ; . . . ;0�;
where Q and T are given in (1). Then, we can rewrite the governing equations in conservative form, with H ¼ Fþ eF:
@tQ þ @xHðQ Þ ¼ 0: ð41Þ
We integrate the governing equations multiplied by basis function ui over each computational cell. To obtain a weak solu-
tion of (41):
Z

Ij

@tQuiðxÞdx�
Z

Ij

HðQ Þ@xuiðxÞdxþ HðQ ÞuiðxÞð Þj
x

jþ1
2

x
j�1

2

¼ 0:
Using the theory of Dal Maso et al. [25] the following weak formulation can be obtained:
Z
Ij

@tQuiðxÞdx�
Z

Ij

FðQ Þ@xuiðxÞdxþ HðQ ÞuiðxÞð Þj
x

jþ1
2

x
j�1

2

¼ �
Z

Ij

TðQ Þ@x �auiðxÞdx

� 1
2
uiðxÞ

Z 1

0
T �uðs; Q L;Q RÞð Þ @

�u
@s

ds
� �����xjþ1

2

x
j�1

2

; ð42Þ
where a path �uðs; Q L;Q RÞ is introduced, satisfying the properties
�u : ½0;1� � Rn � Rn ! Rn;

�uð0;Q L;Q RÞ ¼ Q L; �uð1;Q L;Q RÞ ¼ Q R:
We use a linear path in our computations, namely
�uðs;Q L;Q RÞ ¼ Q L þ sðQ R � Q LÞ; s 2 ½0;1�:
Then we take into account the piecewise-linear approximation of the solution. That is, the solution inside the jth computa-
tional cell is represented as a linear combination
Q j
h ¼ Q j

0ðtÞu
j
0ðxÞ þ Q j

1ðtÞu
j
1ðxÞ; ð43Þ
where
uj
0ðxÞ ¼ 1; uj

1ðxÞ ¼
2ðx� xjÞ

Dxj
:

Substituting (43) to (42), we obtain the following ODE system for the degrees of freedom in the basis expansion for jth com-
putational cell:
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dQ j
0ðtÞ

dt
¼ 1

Dxj
Pj�1

2
ðQhÞ � Pjþ1

2
ðQ hÞ �

Z
Ij

TðQ hÞ@x�adx� 1
2

Z 1

0
T �uðs; �Q jþ1

2
Þ

� � @ �u
@s

dsþ 1
2

Z 1

0
T �uðs; �Q j�1

2
Þ

� � @ �u
@s

ds
" #

; ð44Þ

dQ j
1ðtÞ

dt
¼ 3

Dxj

Z
Ij

FðQ hÞ
2

Dxj
dx� Pj�1

2
ðQ hÞ � Pjþ1

2
ðQ hÞ �

Z
Ij

TðQ hÞ@x �a
2ðx� xjÞ

Dxj
dx� 1

2

Z 1

0
T �uðs; �Q jþ1

2
Þ

� � @ �u
@s

ds
"

�1
2

Z 1

0
T �uðs; �Q j�1

2
Þ

� � @ �u
@s

ds
�
; ð45Þ
where �Q jþ1
2
¼ Q jþ1

2
L ;Q jþ1

2
R

h i
are boundary extrapolated values of the approximate solution in the jth and ðjþ 1Þst cells at the

cell interface jþ 1
2.

In (44) and (45) Pjþ1
2
ðQ hÞ denotes the nonconservative numerical flux through the cell interface. This flux depends on the

values of the numerical solution on both sides of the cell interface �Q jþ1
2
. This numerical flux is an approximation of the ‘‘con-

servative” intercell flux HðQ Þ, however, it actually consists of a conservative and nonconservative parts. The general con-
struction of such flux was derived in [24] and can be directly applied to the nonconservative system describing two-
phase flows.

We use the Riemann solver of this paper and the numerical flux derived in Section 5.1 to approximate the conservative
part of P and add the term corresponding to the nonconservative part.

The resulting nonconservative flux P can then be approximated as
Pjx
jþ1

2

¼ bFðQ L;Q RÞ �
1
2

Z 1

0
T �uðs; Q L;Q RÞð Þ @

�u
@s

ds; ð46Þ
where Q L and Q R are the states to the left and right of the cell interface xjþ1
2
, respectively, and bF is the numerical flux based on

our Riemann solver.
Another important stage in the construction of the numerical scheme is the approximation of the volume fraction deriv-

ative @x �a. As the numerical solution is piecewise linear, one possible way is to use directly the piecewise constant derivative
of the approximate solution. However, this approach does not give satisfactory results, as the possible volume fraction jump
across the cell interface is not taken into account.

In this paper we use a different formulation. We introduce additional variables representing the volume fraction deriv-
ative, so that it becomes an independent variable and we can find a piecewise-linear approximation of the volume fraction
gradient:
@x �a ¼ V: ð47Þ
We use the same approach to find the approximation of the V variable, namely, we represent V as a linear function inside the
jth computational cell:
Vj
h ¼ Vj

0ðtÞu
j
0ðxÞ þ Vj

1ðtÞu
j
1ðxÞ ð48Þ
multiply Eq. (47) by basis functions u0 and u1, use expression (48) for the volume fraction derivative and integrate over Ij.
Finally we obtain the following definitions for the degrees of freedom of Vj

h:
Vj
0ðtÞ ¼

1
Dxj

�ajþ1
2
� �aj�1

2

h i
;

Vj
1ðtÞ ¼

3
Dxj

�ajþ1
2
þ �aj�1

2
�
Z

Ij

�aj
hðxÞ

2
Dxj

dx

" #
;

where �aj
hðxÞ is a linear approximation of �aðxÞ on Ij and �aj�1

2
are the estimations of the solid volume fraction on cell interfaces.

There are several ways to find these estimates, one of them is to take the average value of the volume fractions to the left and
right sides of the cell interface. This approach is simple, but on solutions with large volume fraction jumps it can produce
spurious oscillations. We thus use a different approach based on a partial analysis of the Riemann problem solution for
(1), namely, we assume
�aj�1
2
¼ �aL; if SM P 0;

�aj�1
2
¼ �aR; if SM < 0;
where �aL and �aR are the left and right initial volume fractions of the Riemann problem and SM is the speed of the solid contact
(see Fig. 1).

Having approximated the volume fraction derivative, we need to select the appropriate quadrature rule for the cell inte-
gration. In our computations we have used different Gauss–Lobatto quadratures for nonconservative terms, which lead to
approximately the same results beginning with the five-point rule. For the integrals of the conservative terms we use the
three-point Gauss quadrature.
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We use the explicit two-stage TVD Runge–Kutta scheme for the solution of the system of ODE (44) and (45). On each
intermediate step of the Runge–Kutta procedure we apply a slope limiter similar to the one described in [23]. The limiting
is performed in characteristic variables.

6. An HLLC-based path-conservative method

Conservative and nonconservative systems can all be written in the quasilinear (nonconservative) form
@tQ þ AðQ Þ@xQ ¼ SðQ Þ; ð49Þ
where Q is assumed to be the vector of physically conserved variables. In the conservative case AðQ Þ is the Jacobian matrix of
a flux function FðQ Þ, that is AðQ Þ ¼ @FðQ Þ=@Q . In the nonconservative case such flux function is not available. A prominent
example of a nonconservative hyperbolic system are the Baer–Nunziato equations, which are the equations of concern in this
paper. In this section, after a brief introduction, we describe an upwind path-conservative scheme to solve numerically equa-
tions of the type (49); we also implement the new HLLC Riemann solver proposed in this paper in such numerical scheme.

6.1. Nonconservative systems and path-conservative methods

The difficulty in dealing with hyperbolic equations with nonconservative products, such as in (49), arises when solutions
are discontinuous. Then we cannot apply the usual Rankine–Hugoniot jump condition to (49) to define shocks, as there is no
flux function FðQ Þ. Mathematically, equations of this type have been studied by Volpert [26] and many others, since then.
More recently, Dal Maso and collaborators [25] have put forward a mathematical theory that allows the definition of weak
solutions of nonconservative hyperbolic systems. A key ingredient of the theory is the definition of paths u in phase space
with the properties described in the previous section
u : ½0;1� � Rn � Rn ! Rn:
An obvious and useful example of a path is the canonical path
uðs;Q L;Q RÞ ¼ Q L þ sðQ R � Q LÞ; s 2 ½0;1�: ð50Þ
A shock solution of speed S of the form
Q ðx; tÞ ¼
Q L; if x=t < S;

Q R; if x=t > S

�

is required to satisfy Generalised Rankine–Hugoniot conditions
Z 1

0
S
@

@s
uðs;Q L;Q RÞds ¼

Z 1

0
Aðuðs;Q L;Q RÞÞ

@

@s
uðs;Q L;Q RÞds: ð51Þ
Note that if the path (50) is used in (51) we obtain
SðQ R � Q LÞ ¼
Z 1

0
AðQ L þ sðQ R � Q LÞÞds

� �
ðQ R � Q LÞ:
Numerical methods to solve equations in nonconservative form can then be constructed following this mathematical theory
of Dal Maso et al. [25]. The first reported attempt is due to Toumi [27]. Then Parés and collaborators [10,28] developed fur-
ther this idea and introduced the concept of path-conservative schemes defined as
Q nþ1
j ¼ Q n

j �
Dt
Dx

Dþj�1
2
þ D�jþ1

2

h i
; ð52Þ
where D�jþ1
2

and Dþjþ1
2

satisfy
D�jþ1
2
ðQ ;Q Þ ¼ 0;Dþjþ1

2
ðQ ;Q Þ ¼ 0
and
D�jþ1
2
þ Dþjþ1

2
¼
Z 1

0
A uðs;Q n

j ;Q
n
jþ1Þ

� � @
@s

uðs;Q n
j ;Q

n
jþ1Þds:
Upwind path-conservative schemes have been constructed by resorting to the Roe ideas for conservative methods. To this
end a Roe-type matrix bA is defined as that possessing the usual three properties of Roe’s method for conservative systems,
namely hyperbolicity, consistency and conservation. The first two properties are obvious and the third one takes the form
bAðQ n
jþ1 � Q n

j Þ ¼
Z 1

0
A uðs;Q n

j ;Q
n
jþ1Þ

� � @
@s

uðs;Q n
j ;Q

n
jþ1Þds:
Given a Roe linearisation bA one can define a path-conservative scheme of the form (52), where



Table 14
EOS parameters, initial discontinuity position.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

�c 1.4 3.0 1.4 1.4 3.0 3.0
c 1.4 1.35 1.4 1.4 1.4 1.4
P0 0.0 3400.0 0.0 0.0 10.0 100.0
x0 0.5 0.5 0.5 0.5 0.5 0.8

Table 15
Initial data (solid phase).

Test �aL �qL �uL �pL �aR �qR �uR �pR

1 0.8 1.0 0.0 1.0 0.3 1.0 0.0 1.0
2 0.2 1900.0 0.0 10.0 0.9 1950.0 0.0 1000.0
3 0.8 1.0 0.75 1.0 0.3 0.125 0.0 0.1
4 0.8 1.0 �2.0 0.4 0.5 1.0 2.0 0.4
5 0.6 1.4 0.0 2.0 0.3 1.0 0.0 3.0
6 0.7 1.0 �19.5975 1000.0 0.2 1.0 �19.5975 0.01

Table 16
Initial data (gas phase).

Test aL qL uL pL aR qR uR pR

1 0.2 0.2 0.0 0.3 0.7 1.0 0.0 1.0
2 0.8 2.0 0.0 3.0 0.1 1.0 0.0 1.0
3 0.2 1.0 0.75 1.0 0.7 0.125 0.0 0.1
4 0.2 1.0 �2.0 0.4 0.5 1.0 2.0 0.4
5 0.4 1.4 0.0 1.0 0.7 1.0 0.0 1.0
6 0.3 1.0 �19.5975 1000.0 0.8 1.0 �19.5975 0.01

Fig. 4(a). Test 1. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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D�jþ1
2
¼ bA�jþ1

2
ðQ n

jþ1 � Q n
j Þ;D

þ
jþ1

2
¼ bAþ

jþ1
2
ðQ n

jþ1 � Q n
j Þ;
with
 bA�jþ1
2
¼ Rjþ1

2
K�jþ1

2
R�1

jþ1
2
; bAþ

jþ1
2
¼ Rjþ1

2
Kþjþ1

2
R�1

jþ1
2
:

Here K�jþ1
2

is the diagonal matrix of non-positive eigenvalues and Kþjþ1
2

is the diagonal matrix of non-negative eigenvalues, Rjþ1
2

is the matrix of right eigenvectors at the interface.

6.2. HLLC-based scheme

In this paper we construct an alternative upwind path-conservative method following the ideas of Muñoz and Parés [28].
Assume Q jþ1

2
ðx=tÞ is the solution of the Riemann problem
@tQ þ AðQ Þ@xQ ¼ 0;

Q ðx; 0Þ ¼
Q n

j ; if x < 0;

Q n
jþ1; if x > 0:

(
ð53Þ
We denote by Q jþ1
2
ð0Þ the corresponding Godunov state. Then a path-conservative scheme of the type (52) can be con-

structed by defining D�jþ1
2

and Dþjþ1
2

as follows
D�jþ1
2
¼
Z 1

0
A u s;Q n

j ;Q jþ1
2
ð0Þ

� �� � @
@s

u s;Q n
j ;Q jþ1

2
ð0Þ

� �
ds ð54Þ
and
Dþjþ1
2
¼
Z 1

0
A u s;Q jþ1

2
ð0Þ;Q n

jþ1

� �� � @
@s

u s;Q jþ1
2
ð0Þ;Q n

jþ1

� �
ds: ð55Þ
Fig. 4(b). Test 1. Results for the solid phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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In principle, a wide variety of state Riemann solvers can now be applied. Examples include: the exact Riemann solver, lin-
earized Riemann solvers, two-rarefaction Riemann solvers, two-shock type Riemann solvers and others. No practical expe-
rience on this approach has been reported in the literature. Using the canonical path (50) we have
D�jþ1
2
¼ eA�jþ1

2
Q jþ1

2
ð0Þ � Q n

j

� �
;Dþjþ1

2
¼ eAþ

jþ1
2

Q n
jþ1 � Q jþ1

2
ð0Þ

� �
; ð56Þ
where eA�
jþ1

2
and eAþ

jþ1
2

are obtained from numerical approximations to the following integrals
eA�jþ1
2
¼
Z 1

0
A u s;Q n

j ;Q jþ1
2
ð0Þ

� �� �
ds; eAþ

jþ1
2
¼
Z 1

0
A u s;Q jþ1

2
ð0Þ;Q n

jþ1

� �� �
: ð57Þ
We use the five-point Gauss quadrature rule to calculate these integrals. Note that for the Baer–Nunziato equations the ma-
trix A has a lot of zero elements, for which numerical integration is not needed. This fact allows to save computational time.
7. Assessment of HLLC-based numerical schemes

Here we test the performance of the HLLC Riemann solver implemented in three numerical methods, namely finite vol-
ume method, discontinuous Galerkin (DG) finite element method and a new variant of path conservative methods. The finite
volume and path-conservative schemes are first-order accurate and the DG finite element method is second-order accurate
in both space and time. The purpose of this section is to illustrate the wide range of applications of the approximate Riemann
solver of this paper.

7.1. Riemann problems

We consider six test problems. The initial data consists of two constant states separated by a discontinuity at x ¼ x0, all
the parameters are listed in Tables 14–16. Transmissive boundary conditions are imposed at x ¼ 0 and x ¼ 1. Figs. 4–9 show
the computational results for all these tests. All the results presented below were computed using the mesh of N ¼ 100 cells
Fig. 5(a). Test 2. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.



Fig. 5(b). Test 2. Results for the solid phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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in the one-dimensional domain [0,1] at Courant number coefficient CCFL ¼ 0:9, except for the RKDG method, for which the
Courant number was taken equal to 0.6. We use the following estimation for the time step:
Dtn ¼ CCFLDx=Sn
max;
where CCFL is prescribed and the expression for Sn
max is given by
Sn
max ¼ max

i
fjun

i j þ an
i g; i ¼ 1 . . . N:
In each figure we present the results from three methods: finite volume (denoted as FV), Runge–Kutta discontinuous Galer-
kin (DG) and path-conservative (PC). The only test for which just finite volume and DG results are presented is the low-den-
sity case (Test 4), as the path-conservative scheme failed to compute a solution to this problem. For the other test cases we
observe good agreement with the exact solution for all the three approaches.
7.1.1. Results for test 1
Test 1 was presented in [9] and results are shown in Figs. 4(a) and 4(b). The solid-phase wave pattern consists of a left

rarefaction, a right shock wave and a right travelling solid contact, while the gas phase consists of a left rarefaction, a contact
and a right shock wave. The equations of state for both phases are assumed ideal, with �c ¼ c ¼ 1:4. This is a rather mild test
case, for which all of the three methods considered produce almost identical results, with path-conservative scheme produc-
ing larger errors in the solid phase velocity, density and pressure, see Fig. 4(b).
7.1.2. Results for test 2
Test 2 was also presented in [9] and results are shown in Figs. 5(a) and 5(b). This test problem is more demanding than

Test 1 as it includes large variations of initial data and non-ideal EOS. For this problem the three methods are almost identical
again.



Fig. 6(a). Test 3. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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7.1.3. Results for test 3
Test 3 is an extended version of a test in [18] and results are shown in Figs. 6(a) and 6(b). The solution, for both phases,

consists of a right shock wave, a right travelling contact discontinuity and a left sonic rarefaction wave. The correct resolu-
tion of the sonic point is very important in assessing the entropy satisfaction property of the numerical scheme. Among the
schemes considered only the path-conservative approach generates a non-physical entropy glitch at the sonic point, which
vanishes slowly with mesh refinement. The finite volume and discontinuous Galerkin methods do not experience any diffi-
culties in resolving the sonic rarefaction wave.

7.1.4. Results for test 4
Test 4 is an extension of the so-called 123-problem [18] for two-phase flows and results are shown in Figs. 7(a) and 7(b).

Both solid and gas phases consist of a two symmetric rarefaction waves and a trivial stationary contact wave. The region
between the rarefaction waves is close to vacuum, therefore this test case is useful to assess the pressure positivity in dif-
ferent numerical methods.

The results of computations show that the finite-volume scheme with HLLC-type Riemann solver produces the most accu-
rate solution, while the discontinuous Galerkin approach gives spurious oscillations that result in a severe slope limiting and
very inaccurate resolution of phase volume fractions, which fortunately improves as the mesh is refined. The path-conser-
vative method fails to compute the solution to this test problem. Note that the exact resolution of the volume fraction by the
finite volume method is due to the present complete Riemann solver.

7.1.5. Results for test 5
Test 5 was designed to assess the ability of numerical methods to resolve the stationary isolated contact waves [18], the

results are shown in Figs. 8(a) and 8(b). The exact solution allows the existence of the stationary contact waves in the solid
and gaseous phases when the volume fraction and solid pressure gradients are present across the solid contact. The solution
of this test problem contains isolated contacts in both solid and gas phases. As it can be seen from Figs. 8(a), 8(b), 8(c), 8(d)
this type of discontinuities is resolved exactly by all three schemes considered, provided that the Riemann solver used is the
HLLC-type two-phase solver of this paper.



Fig. 6(b). Test 3. Results for the solid phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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To compare the performance of the proposed HLLC-type Riemann solver with other solvers we present the results com-
puted using the HLL-type flux suggested in [24] (see Figs. 8(c) and 8(d)). The solution was obtained by the finite-volume
scheme under the same conditions on the mesh and the CFL number.

7.1.6. Results for test 6
Test 6 is the extension of a strong-shock test problem from [18], which was designed to assess the robustness and

accuracy of numerical methods. The results are presented in Figs. 9(a) and 9(b). The solution of this problem contains,
for each phase, a right travelling shock wave, a contact discontinuity and a left rarefaction wave. As the jump of initial
pressures is very large, strong shock waves are generated in each phase; the distance between the right shock and contact
waves is small in the gas phase. These flow features can lead to inaccuracies in numerical solution. For this test case the
Riemann solver is more sensitive to the guess values in the Newton iteration. Comparing the results obtained by three
numerical methods we observed that the most accurate solution was computed using discontinuous Galerkin methods,
which is second order in space and time. Among the first-order schemes the finite-volume method proved to be more
accurate.

7.2. Interaction of nearly pure fluids

In this section we study the performance of the proposed HLLC-type Riemann solver for the simulation of pure materials
interaction in the framework of the finite volume method. Various examples of such test problems were introduced in [2,3].

We use the following initial data in our computations: the initial discontinuity is positioned at x ¼ 0:5 in the computa-
tional domain [0,1], values for left and right initial data are listed in Tables 17–19.

This test problem corresponds to the interaction of the nearly pure solid phase (on the left) and nearly pure gas
phase (on the right), separated by the initial discontinuity. In order to simulate nearly pure materials the corresponding
volume fraction is taken close to 1, namely, �aL ¼ 1� e and aR ¼ 1� e, where e ¼ 10�6. The resulting exact solution to
this problem repeats the solution of the Riemann problem for the Euler equations with the left and right initial data



Fig. 7(a). Test 4. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.
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taken from the pure phase present on each side of the discontinuity; this property allows to choose arbitrary initial data
for the material in the region where it almost vanishes, i.e. on that side of the initial discontinuity where the volume
fraction equals to e.

Fig. 10 shows the solution obtained with the proposed HLLC-type numerical flux incorporated in the finite volume
scheme. We present the results computed at the CFL number 0.9 on three meshes of 100, 1000 and 5000 cells to illustrate
the convergence of the method. The dashed vertical line separates the regions occupied by each of the fluids, namely, the
solid phase is situated on the left of this line and the gas phase on its right.

It should be noted that certain difficulties were experienced in the numerical solution of the pure fluids interaction prob-
lems. Although the Riemann solver itself provides accurate solution to the problem locally, the overall numerical solution
can not be computed by some of the methods. Thus, the considered discontinuous Galerkin and path-conservative schemes
fail to compute the solution to the presented test problem involving very low volume fractions and high changes of pressures
or densities on the interface, regardless of the numerical flux used. On the other hand, the finite volume method combined
with the HLLC-type Riemann solver or the exact Riemann solver gives a good solution quality, as observed in Fig. 10. Finally,
it is also worth mentioning that difficulties in the numerical solution of the interaction problems may occur if the initial data
contains pressure jumps with the ratio more than 103, as it appears to be restrictive for the approximate Riemann solvers as
well as for the exact Riemann solver.

Comparison of the results obtained by our numerical flux with the results computed with the exact flux [9] shows that the
quality of the solution is virtually invariant, while our approximate numerical flux allows to reduce the computational time
by 50–60%, which is advantageous for practical applications. The speed of the derived HLLC-type Riemann solver for the
Baer–Nunziato equations was estimated and compared to the speed of the exact solver, measured on the same computa-
tional platform. Table 19 presents the average computational time (in seconds) for both solvers and their ratio.

The ratio of computational times for the implementation of the exact and approximate Riemann solvers is about 2.6,
which means that the algorithm using the latter solver can be accelerated by 62% in average. The same ratio holds true
for the whole algorithm including all the calculations, which means that the savings related purely to the flux are much more
significant.



Fig. 7(b). Test 4. Results for the solid phase: computed (symbol) and exact solution (line) at time t ¼ 0:15.

Fig. 8(a). Test 5. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:15. HLLC-type Riemann solver.
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8. Concluding remarks

We have solved approximately the Riemann problem for the split three-dimensional Baer–Nunziato equations of
compressible two-phase flow for ideal and stiffened gas equations of state. The Riemann solver is nonlinear and com-
plete, as it contains all the characteristic fields present in the exact solution of the Riemann problem. In particular the
approximate Riemann solver is capable of recognizing exactly isolated linearly degenerate fields, such as contacts and
shear waves. Solvers that do not possess this feature introduce excessive numerical dissipation in the overall solution.



We have systematically assessed the solver by comparing the approximate solution with the exact solution for a series
of carefully selected Riemann problems and found the approximate solution to be accurate for most cases considered.



Fig. 9(a). Test 6. Results for the gas phase: computed (symbol) and exact solution (line) at time t ¼ 0:007.
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But the main use of the proposed Riemann solver is in the calculation of numerical fluxes for numerical methods in-
tended for solving the general initial-boundary value problem. Thus we have implemented the approximate solver in
the framework of finite volume, discontinuous Galerkin finite elements and path-conservative schemes. We have then
thoroughly tested all the schemes on a series of demanding problems and found the schemes to be generally accurate
and robust. The low-density test problem causes difficulties to the DG and the path-conservative scheme; the first one
gave very inaccurate results for the stationary contact wave and the second one failed altogether. But we note that this
is also the case for single-phase gas dynamics and not an exclusive feature of the Baer–Nunziato equations. We also
compared the performance of the exact solver and our approximate solver as building blocks of the three numerical
approaches described earlier. The obtained numerical results are virtually indistinguishable from each other but our
approximate solver is significantly faster. Moreover, the approximate solver is also more robust than the exact solver.
In a typical calculation one must solve thousand if not millions of local Riemann problems and the chances of finding
a local Riemann problem for which the exact Riemann solver fails to converge are high. This fact renders the exact sol-
ver useless as a computational option.

The approximate Riemann solver of this paper can be used in a straightforward manner to solve the two- and three-
dimensional Baer–Nunziato equations numerically, as the solution of the Riemann problem was given for the x-split
three-dimensional equations, where x is the direction normal to an element interface in a computational setup. The solver
could also be extended to deal with more complicated equations of state in order to solve realistic problems. Another pos-
sible extension is the treatment of purely supersonic flow, namely the flow satisfying the condition ðu� �uÞ2 > a2. For some
applications one may also find locally supersonic flow, for which the solver must identify the situation automatically and
respond appropriately. These issues are the subject of current investigations by the authors.
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Fig. 9(b). Test 6. Results for the solid phase: computed (symbol) and exact solution (line) at time t ¼ 0:007.

Table 17
Initial data (solid phase).

�aL �qL �uL �pL �aR �qR �uR �pR

1� e 103 0.0 2� 107 e 103 0.0 2� 107

Table 18
Initial data (gas phase).

aL qL uL pL aR qR uR pR

e 50.0 0.0 105 1� e 50.0 0.0 105

Table 19
Computational time.

Time, 10�6 s

Exact RS 10.14
Approximate RS 3.9
Ratio 2.6
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Fig. 10.Test 7. Results for the solid phase: computed (symbol) and exact solution (line) at timet ¼ 0:15.S.A. Tokareva, E.F. Toro / Journal of Computational Physics 229 (2010) 3573…3604
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